

ХАРАКТЕРИСТИКА И ПРОИЗВОДСТВО КОМБИКОРМОВ.

Современное развитие и интенсификация животноводства и птицеводства нуждаются в большом количестве кормов. Поэтому наряду с естественными кормами, которые соответствуют обычной пище животных, необходимо использовать и все кормовые средства, получаемые в разных отраслях промышленности в качестве побочных продуктов.

Научными исследованиями и практикой кормления животных установлено, что лучшее использование питательных веществ, заложенных в отдельных видах кормовых средств, достигается при скармливании их животным не в чистом виде, а в виде комбинированных смесей (комбикормов).

Гранулированный комбикорм

Комбикорм — это сложный однородный состав, в который входят очищенные и измельчённые до требуемой крупности различные кормовые средства и микродобавки, создаваемый по научно обоснованным рецептам и обеспечивающий полноценное кормление животных.

Вырабатывают комбикорм с разными питательными достоинствами в соответствии с физиологическими особенностями и хозяйственным назначением животных и птицы, для которых он предназначается. При этом учитывается вид животных, их возраст, направление и степень продуктивности.

Комбикорм необходимо скармливать только тем животным и птице, для которых он приготовлен. Использовать комбикорм по другому назначению не разрешается, так как это может привести к нежелательным последствиям.

Комбикорма производят на специальных предприятиях комбикормовой промышленности — комбикормовых заводах и в цехах.

Предприятия комбикормовой промышленности вырабатывают следующие виды комбикормов: рассыпные крупного, среднего и мелкого размола; гранулированные — в виде плотных комочков определённой формы и размеров; брикетированные — в виде плиток геометрически правильной формы и определённых размеров.

По кормовой ценности комбикорма делятся на два вида:

комбикорма-концентраты, представляющие собой комбикорма с повышенным содержанием протеина, минеральных веществ и микродобавок, скармливаемые с зерновыми, сочными и грубыми кормовыми средствами для обеспечения биологически полноценного кормления животных;

полнорационные комбикорма, т. е. такие, которые полностью обеспечивают потребность животных в минеральных и биологически активных веществах при низких затратах на выработку единицы продукции.

На большинстве комбикормовых заводов комбикорма обогащают солями микроэлементов, синтетическими аминокислотами, антибиотиками и витаминами. Строятся специальные заводы по производству премиксов и белково-витаминных добавок.

Задачи комбикормового производства.

Комбикормовая промышленность призвана выполнять одну из важных народнохозяйственных задач — повышать продуктивность животноводства, быстрое развитие которого необходимо для удовлетворения растущих потребностей населения в основных продуктах питания, а лёгкой промышленности в сырьё.

Успешное развитие животноводства возможно на основе развитой и прочной кормовой базы, в создании которой комбикормовая промышленность играет большую роль. Она призвана снабжать животноводческие и птицеводческие хозяйства комбикормами высокой питательности, содержащими все необходимые для животных вещества: белки, углеводы, жиры, минеральные элементы и витамину.

Поставленная задача о переводе комбикормовой промышленности на индустриальную основу, обеспечивающую значительный рост производительности труда и улучшение качества продукции, отвечает требованиям животноводства и птицеводства.

Современное развитие и интенсификация животноводства и птицеводства нуждается в большом количестве кормов. Однако зерновые корма при скармливании их животным в отдельном виде не удовлетворяют потребностей организма в питательных веществах.

Питание животных считается полноценным, если они получают в рационе все необходимые питательные вещества, смешанные в определённом соотношении для данного вида, возраста и характера продуктивности.

В организации научно обоснованного кормления сельскохозяйственных животных комбикорма имеют важное значение. Сбалансированные по основным питательным веществам, они обеспечивают повышение продуктивности животных на 10—12%, а при обогащении их витаминами, антибиотиками, микроэлементами и другими средствами эффективность их повышается на 25—30%.

Мукомольное, крупяное и комбикормовое производства но своему технологическому профилю являются родственными предприятиями. Мукомольные и крупяные заводы перерабатывают зерно в муку и крупу, а комбикормовые заводы наряду с другими компонентами используют побочные продукты (отруби, мучку, отходы) мукомольно-крупяного производства.

Подготовка сырья к переработке, включающая очистку зерновой массы от примесей, шелушение и контроль отходов является почти одинаковой для всех трёх производств. Во всех стандартах на комбикорма предусмотрены следующие общие требования. Комбикорма должны быть выработаны из доброкачественного, очищенного и измельчённого до необходимой степени крупности кормового сырья по рецептам, предусматривающим надлежащее сочетание компонентов и отвечать заданным нормам качества.

Нормы выхода комбикормов зависят от качества перерабатываемого сырья, его физических свойств, соотношения компонентов в рецептах и от организации и ведения технологического процесса. Предварительный расчёт выходов комбикормов не проводят.

Для планирования использования сырья установлены плановые ориентировочные нормы:

Наименование	Выход, %			
	комбикорм	некормовые отходы	усушка	мех. потери
Рассыпные концентраты	99,0	0,4	0,3	0,3
Брикетированные концентрированные	98,6	0,4	0,6	0,4
Брикетированные полнорационные	97,5	0,4	0,6	1,5
Гранулированные	98,4	0,4	0,7	0,5

Подготовительные процессы при производстве комбикормов.

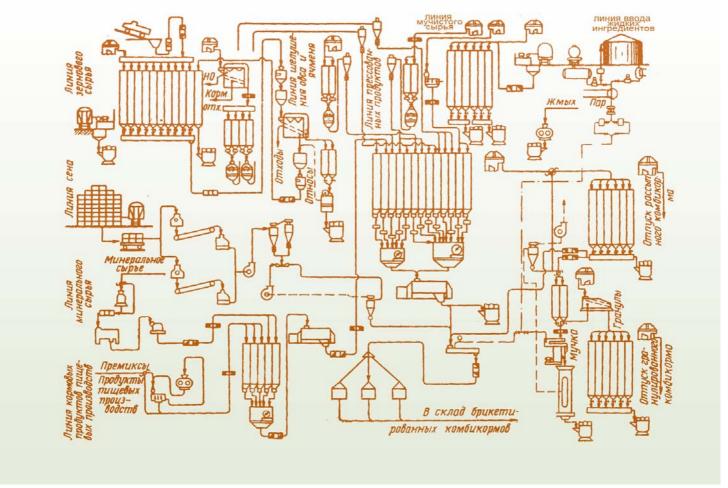
Технологический процесс производства комбикормов состоит из следующих последовательных операций: приём и хранение сырья; очистка сырья от посторонних примесей; шелушение (отделение плёнок) овса и ячменя при производстве некоторых видов комбикормов; измельчение; подготовка соли и мела; приготовление обогатительной смеси; введение в комбикорма мелассы, гидрола, технического жира; дозирование в соответствии с заданными рецептами, смешивание для получения однородной смеси; гранулирование или брикетирование; хранение и отгрузка.

Организация и ведение технологического процесса комбикормового завода должны обеспечить непрерывный поточный метод производства комбикормов, при котором готовую продукцию производят круглосуточно, что возможно только при непрерывном процессе дозирования.

Непрерывность процесса дозирования, в свою очередь, зависит от числа технологических линий для подготовки сырья, наличия бункеров над дробилками и дозаторами, а также от правильной организации работы этих линий. Подготовительные линии конструируют для переработки сырья с близкими технологическими свойствами, однородными по способу очистки, измельчения и другим видам обработки.

Пропускная способность каждой подготовительной технологической линии рассчитывается на последовательную подготовку максимально допускаемого рецептами количества перерабатываемого сырья. Количество технологических линий обработки сырья в зависимости от производительности завода и ассортимента вырабатываемой продукции достигает восьми — десяти. Эти подготовительные линии выполняют следующие технологические операции.

- 1. Линия зернового сырья. Очищают от примесей зерновое сырьё и измельчают его до заданной крупности.
- 2. **Линия мучнистого сырья.** Мучнистое сырьё, не подлежащее измельчению, перед вводом в комбикорма очищают от случайно попавших примесей и направляют в бункера над дозаторами.
- 3. **Линия шелушения овса и ячменя.** Одним из основных компонентов, вводимых в состав комбикорма, является овёс, в ядре которого содержится много легко- перевариваемых питательных веществ. Однако наряду с высокими питательными свойствами овёс содержит в среднем 26% цветочных плёнок, не усваиваемых поросятамиотьёмышами и птицей. Поэтому овёс, вводимый в эти комбикорма, должен быть освобождён от плёнки.
- 4. Линия прессованных и крупнокусковых продуктов.


Эта линия служит для измельчения и очистки от металломагнитных примесей кускового сырья: плиток жмыхов, кукурузы в початках, а также для прессованных кормов животного происхождения и жома. По схеме этой линии кусковое сырьё дробят в валковой дробилке. Дроблёный (до размеров 20—40 мм) продукт проходит магнитную защиту и поступает на молотковую дробилку для мелкого измельчения. После измельчения продукт поступает в наддозаторные бункера.

- 5. **Линия кормовых продуктов пищевых производств.** Назначение линии очистка от примесей, сортирование по крупности и измельчение кормовых продуктов пищевых производств барды сушёной, сухих кукурузных кормов, шротов, мясо-костной, рыбной и китовой муки. Очищают сырьё в сепараторах и в других просеивающих машинах. Крупные примеси отделяют на ситах с отверстиями 0 15—20 мм. Сход с них направляют в некормовые отходы.
- 6. **Линия минерального сырья.** Технологическая линия подготовки минерального сырья служит для сушки и измельчения мела, поваренной соли, ракушек, травертина и некоторых видов известняков. Для сушки соли и мела можно применять передвижную барабанную сушилку. Оптимальная влажность мела до 8%, соли до 2%.
- 7. **Линия измельчения сена.** Сено вводят в полнорационные брикетированные корма в измельчённом виде. Тюки сена, поступающие на комбикормовые заводы, освобождают от обвязочной проволоки и направляют в сеноразрыхлители. Разрыхлённое сено поступает на электромагнитный барабан, а затем в дробилку. Крупность частиц измельчённого сена должна быть не более 5 см. Влажность не более 17%.

- 8. **Производство витаминной травяной (сенной) муки.** Травяную массу сушат в сушильном барабане. Влажность травяной массы после сушки должна быть 7—8%. Высушенную траву измельчают в дробилке.
- 9. Линия жидких компонентов. К жидким компонентам относят мелассу, кормовой жир, рыбный экстракт, солёный гидрол и др. Жидкие компоненты (кроме гид- рола), применяемые при производстве комбикормов, подогревают, а затем подают в мелассосмесители. Кроме подогрева, в процессе подготовки жидкие компоненты очищают от случайных примесей.

Схема технологического процесса комбикормового завода промышленного типа

кликните для увеличения

Объединение всех технологических этапов подготовки и обработки сырья в единый технологический процесс выработки комбикормов представляет собой принципиальную схему производства комбикормового предприятия.

На рисунке приведена схема технологического процесса производства комбикормов. Эта схема не отражает технических показателей машин и производительности завода, а лишь графически показывает коммуникации машин и механизмов.

Дозирование и смешивание компонентов

К важнейшим процессам, проводимым на комбикормовых заводах, следует отнести дозирование и смешивание входящих в состав комбикорма разных компонентов, обладающих различными физико-механическими и химико-биологическими свойствами.

Под дозированием компонентов понимается взвешивание или объёмное отмеривание установленных рецептом порций компонентов комбикорма.

При неправильном дозировании нарушается установленное рецептом процентное соотношение компонентов в комбикормах и качество их снижается. Таким образом, процесс дозирования является главной технологической операцией производства комбикормов.

Сущность процесса дозирования заключается в том, что подготовленные к смешиванию компоненты поступают в оперативные бункера, из бункеров дозаторы подают компоненты в смесительный агрегат в строго определённых количествах. Неточная дозировка входящих в комбикорм компонентов может снизить их питательную ценность и в некоторых случаях привести к заболеванию животных. Поэтому дозирующие машины должны работать с высокой точностью.

Существует два способа дозирования — объёмный и весовой. Машины, дозирующие компоненты по объёму, подают их заданными объёмами в определённые промежутки времени; машины, дозирующие компоненты по массе, отвешивают их в заданных количествах. Дозирующие машины должны обеспечивать точность дозирования продуктов независимо от производительности.

При выборе дозирующих машин необходимо учитывать физико-механические свойства исходных продуктов. Особенно большое значение имеет влажность, так как повышенное влагосодержание ухудшает сыпучесть, а некоторые продукты (мел и соль) комкуются.

Ввод жидких компонентов.

Для увеличения производства комбикормов, повышения их качества и расширения ассортимента количества компонентов, вводимых в комбикорма, кроме сухих компонентов применяют жидкие — мелассу, гидрол, животный технический жир и растворы химических веществ (карбамид и др.).

Введение жидких компонентов не только повышает питательную ценность комбикормов, но и позволяет рационально использовать кормовые отходы мукомольно-крупяной, пищевой и других отраслей промышленности, а также препятствует выделению пыли при приготовлении кормов и их скармливании животным.

Меласса

Меласса, или кормовая патока, является ценным в кормовом отношении отходом свеклосахарного производства. Меласса представляет собой густую (плотность 1,38—1,44 г/см3) вязкую жидкость тёмно-коричневого цвета. Состав свекловичной мелассы: воды 20%, сахара 50, азотистых веществ (не белки) 14, золы 11 и прочих органических веществ 5%. Особо важным микроэлементом в мелассе является кобальт (0,59 мг на 1 кг), недостаток которого в кормах вызывает тяжёлое заболевание жвачных животных. Меласса является хорошим кормовым продуктом, так как она повышает вкусовые и питательные свойства комбикормов и обладает высокой питательной ценностью— в 100 кг мелассы содержится 76,8 корм. ед.

При кормлении жвачных животных мелассированными кормами повышается усвоение клетчатки, что позволяет использовать кормовые средства с высоким её содержанием (стержни початков кукурузы, овсяную лузгу и др.).

В подогретом состоянии меласса становится текучей, легко впитывается продуктами, образуя сухой мелассированный корм.

На комбикормовых заводах мелассу вводят как в рассыпные, так и в гранулированные комбикорма в следующих количествах: для птицы всех видов и возрастных групп до 3%, для свиней всех возрастных групп до 5, для крупного рогатого скота до 7, для рыб до 3, для овец до 7 и для кроликов и нутрий до 7,5%.

Гидрол. Солёный гидрол является побочным продуктом производства глюкозы на предприятиях крахмалопаточной промышленности. Он представляет собой легкоподвижную жидкость тёмно-коричневого цвета с плотностью 1,30—1,34 г/см3. Вязкость гидрола меньше, чем мелассы. Гидрол содержат 46—48% сахара, 11—14 поваренной соли и около 40% воды.

Карбамид

Карбамид и его растворы. Карбамид (мочевина) — ценный химический продукт, который применяют в животноводстве как источник кормового азота, идущего на образование белка в желудке жвачных животных. Карбамид — белое кристаллическое вещество солоновато-горького вкуса, без запаха, хорошо растворяется в воде.

Животный жир. На комбикормовых заводах в настоящее время вводят в комбикорм технические жиры животного происхождения. Жиры добавляют в комбикорм в жидком (растопленном) виде. Введение в состав комбикорма технических животных жиров повышает их вкусовые качества и питательную ценность.

Линию жидких компонентов оборудуют резервуарами для хранения, устройствами для подогрева, перекачивания, очистки, учёта расхода и дозирования. Жидкие компоненты (кроме гидрола и кукурузного экстракта), применяемые при производстве комбикормов, подогревают. Мелассу подогревают до 50—60°С, но не выше, так как при высокой температуре она превращается в твёрдую кристаллическую массу. Дозирование, распыление и смешивание жидких компонентов выполняют при помощи мелассосмесителей.

Технологический процесс мелассирования проходит в такой последовательности. Мелассу из железнодорожных цистерн выгружают в подземное хранилище (резервуар). Из хранилища по мере надобности мелассу подают в бак для предварительного подогрева, затем насосом перекачивают в запасной бак, установленный в производственном корпусе. Количество мелассы, переданной в производство, учитывают при помощи мерного бака, установленного на весах.

Из мерного бака меласса поступает в нагревательный бак, где нагревается до температуры 50—60°C. Для улавливания крупных примесей, попадающихся в мелассе, в нагревательный бак ставят сито с отверстиями 0.8 мм.

Из нагревательного бака подогретая меласса насосами через распылитель подаётся в смесители, куда также поступают компоненты комбикорма.

Обогащение комбикормов

Сырьё, применяемое для производства комбикормов, по содержанию питательных веществ не всегда обеспечивает нормальное развитие организма животного и продуктивность. Поэтому в комбикорма вводят обогатители—витамины, микроэлементы, антибиотики, аминокислоты, ферменты.

Исследованиями, проведёнными как в нашей стране, так и за рубежом, установлено, что наиболее целесообразно применять для кормления животных биологически активные вещества в виде предварительно приготовленных обогатительных смесей — белково-витаминных добавок и премиксов.

Белково-витаминные добавки (БВД)

Белково-витаминные добавки (БВД). Они представляют собой смесь различных по качеству компонентов, которые должны равномерно распределяться по всей массе смеси.

Поскольку БВД вводят в комбикорма и рационы как компонент в количестве 10—30%, то у этой смеси должна быть устойчивая однородность и хорошая сыпучесть.

Состоят БВД из белковых компонентов, витаминов, микроэлементов и других стимуляторов роста и продуктивности сельскохозяйственных животных.

В качестве наполнителя добавок применяют пшеничные отруби. Белковые компоненты — это жмыхи, шрот, дрожжи сухие, мясокостная и рыбная мука. Соль и мел предварительно сушат, а затем измельчают на дробилках. Витамины и антибиотики вводят в БВД в сухом виде, а микроэлементы в водном растворе. БВД хранят и перевозят в мешках.

Премиксы или обогатительные добавки

Премиксы или обогатительные добавки. Представляют собой смесь биологически активных веществ (микроэлементов, витаминов, антибиотиков и других препаратов) и наполнителя. Предназначены премиксы для ввода в комбикорма и белково-витаминные добавки на комбикормовых заводах и в кормовые смеси непосредственно в хозяйствах.

В зависимости от потребности и содержания биологически активных веществ и рациона животных рецепты премиксов могут быть простые, состоящие из одного или двух компонентов и сложные, в состав которых входят три, и более компонентов.

Все виды продукции на комбикормовых заводах обогащают введением микродобавок в виде порошков (сухим способом) или растворов (жидким способом).

Установлено, что наиболее равномерное распределение микродобавок достигается при предварительном приготовлении обогатительных смесей, которые составляют из наполнителей и микродобавок, с последующим микродозированием таких смесей в комбикорма.

В качестве наполнителя используют шрот, кормовые дрожжи, кормовые антибиотики, муку злаковых и бобовых культур, корма животного происхождения и др.

В зависимости от состава и назначения премиксы могут быть витаминные, минеральные, витаминно-минеральные, витаминно-антибиотические.

Из микроэлементов в премиксах используют соли металлов: железа, меди, цинка, марганца, йода, кобальта. На комбикормовых заводах добавляют в среднем 10 кг премиксов на 1 т комбикормов.

Карбамидные концентраты. В настоящее время на комбикормовых заводах применяют специально подготовленные карбамидные концентраты.

Использование обычного карбамида имеет определённые трудности технологического и зоотехнического порядка. Высокая гигроскопичность карбамида не позволяет вводить его в сухом виде, а подача в растворённом виде затруднена. В пищеварительных органах животных карбамид в излишних количествах может быть токсичным.

Карбамидный концентрат получают методом экструзии из смеси измельчённого зерна (70—75%), карбамида (20—25%) и бентонита (5—10%). Смесь обрабатывают в специальных аппаратах-экструдерах, в которых при высоком давлении и температуре выпрессовывают тестообразный продукт. Карбамид в экструдере связывается с крахмалом измельчённого зерна и бентонитом. Поэтому отсутствует самосортирование продукта, находящийся в концентрате карбамид медленно высвобождается в желудке животного, используется практически полностью и не является токсичным.

Схема производства карбамидного концентрата включает размол зерна, смешивание его с карбамидом и бентонитом, обработку в экструдерах, охлаждение и размол в молотковых дробилках с ситами с отверстиями 0 5—8 мм.